Department of Mathematical and Computational Sciences National Institute of Technology Karnataka, Surathkal

MA204 - Linear Algebra and Matrices
 Problem Sheet - 3

Vector Spaces and Subspaces
 and
 Solving $A x=b$ and $A x=0$

1. Which of the following subsets of R^{3} are actually subspaces?
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ with first component $b_{1}=0$.
(b) The plane of vectors b with $b_{1}=1$.
(c) The vectors b with $b_{2} b_{3}=0$ (this is the union of two subspaces, the plane $b_{2}=0$ and the plane $b_{3}=0$).
(d) All combinations of two given vectors $(1,1,0)$ and $(2,0,1)$.
(e) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ that satisfy $b_{3}-b_{2}+3 b_{1}=0$.
2. Which of the following are subspaces of R^{∞} ?
(a) All sequences like $(1,0,1,0, \ldots)$ that include infinitely many zeros.
(b) All sequences $\left(x_{1}, x_{2}, \ldots\right)$ with $x_{j}=0$ from some point onward.
(c) All decreasing sequences: $x_{j+1} \leq x_{j}$ for each j.
(d) All convergent sequences: the x_{j} have a limit as $j \rightarrow \infty$.
(e) All arithmetic progressions: $x_{j+1}-x_{j}$ is the same for all j.
(f) All geometric progressions $\left(x_{1}, k x_{1}, k^{2} x_{1}, \ldots\right)$ allowing all k and x_{1}.
3. Let P be the plane in 3 -space with equation $x+2 y+z=6$. What is the equation of the plane P_{0} through the origin parallel to P ? Are P and P_{0} subspaces of R^{3} ?
4. The matrix $A=\left[\begin{array}{ll}2 & -2 \\ 2 & -2\end{array}\right]$ is a "vector" in the space M of all 2 by 2 matrices. Write the zero vector in this space, the vector $\frac{1}{2} A$, and the vector $-A$. What matrices are in the smallest subspace containing A ?
5. Find the value of c that makes it possible to solve $A x=b$, and solve it:

$$
\begin{array}{r}
u+v+2 w=2 \\
2 u+3 v-w=5 \\
3 u+4 v+w=c .
\end{array}
$$

6. Construct a system with more unknowns than equations, but no solution. Change the righthand side to zero and find all solutions x_{n}.
7. Find the complete solutions of

$$
\begin{array}{r}
x+3 y+3 z=1 \\
2 x+6 y+9 z=5 \\
-x-3 y+3 z=5
\end{array} \quad \text { and } \quad\left[\begin{array}{llll}
1 & 3 & 1 & 2 \\
2 & 6 & 4 & 8 \\
0 & 0 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
t
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
1
\end{array}\right] .
$$

8. Give examples of matrices A for which the number of solutions to $A x=b$ is
(a) 0 or 1 , depending on b.
(b) ∞, regardless of b.
(c) 0 or ∞, depending on b.
(d) 1, regardless of b.
9. Show by example that these three statements are generally false:
(a) A and A^{T} have the same nullspace.
(b) A and A^{T} have the same free variables.
(c) If R is the reduced form $\operatorname{rref}(A)$ then R^{T} is $\operatorname{rref}\left(A^{T}\right)$.
10. Construct a matrix whose column space contains $(1,1,5)$ and $(0,3,1)$ and whose nullspace contains (1,1,2).
